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TRANSLATIONAL MOTION OF BODIES UNDER THE FREE SURFACE OF A
HEAVY FLUID OF FINITE DEPTH*

By M. D. Haskind

In reference 1, entitled "The Two-Dimensional Problem of the
Vibration of Bodies under the Surface of a Heavy Fluid of Finite Depth,"
the problem was to determine the wave motion of a heavy fluid excited
by the periodic vibrations of a body of arbitrary shape situated under
the free surface of the fluid of finite depth; the method of N. E. Kochin
(reference 2) was used.

In the present paper, the two-dimensional problem of the wave
motion produced in a heavy fluid of finite depth by the horizontal
rectilinear and uniform motion of a solid body of arbitrary shape
immersed under the surface of the fluid is considered by the same
method.

1. Statement of the Problem

The problem of the translatory motion of a solid body under the
free surface of a heavy incompressible fluid of finite depth will be
considered. The case in which the motion of the body occurs with con-
stant horizontal velocity ¢ will be studied. The motion of the fluid
will pe defined with reference to a moving system of coordinates Oxy
fixed to the body, the x-axis coinciding with the undisturbed level of
the fluid and directed along the direction of motion of the body, and
the y-axis directed vertically upward.

It will be assumed that the motion of the fluid is potential and.
steady relative to the body. From the integral of Lagrange for the
pressure within the fluid,

_ 1l
P - Pg = pC %% -P3 v2 - PEY (l'l)
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where py is the atmosphefic,pressure, p the density of the fluid,

g the acceleration of gravity; w(x,y) the potential of the sbsolute
motion of the fluid, and v = Fgrad ¢| the magnitude of the absolute
velocity of the fluid. '

The function ®(x,y) is determined from the boundary conditions;
the flow condition on the wetted contour of the body,

gg = ¢ cos(n,x) on C (1.2)

where n 1is the outer normasl to the contour C;
on the free boundary p = Pos and hence

0 1 2

= - gy =¢C (1.3)

on the bottom of the channel for y = -hgy, the following condition
applies

i 0 | (1.4)

According to the theory of waves of small amplitude, condi-
tion (1.3) may be linearized. For this purpose the boundary condi-
tion (1.3) is referred to the x-axis and the term v2/2 neglected. 1In
place of condition (1.3),

S - Sylx) =0 | (1.5)

It is easily seen that on the free surface the following relation
holds

cy(x) = @ + const (1.8)
where V¢ 1s the stream function. In fact, when the stream function of
the motion of the fluld relative to the body is denoted by ¥, there
is obtained

Yo =V - cy

or
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From this relation, equation (1.6) follows, since the boundary of
the fluid in the relative motion is represented by stream lines on which

WO is cqnstant, For the free surface, 1t may be assumed that ¥o = O.
Hence, on the free surface,
cy(x) = ¥
and therefore boundary condition (1.5) assumes the form
%f—{’-w:o for y=0 (1.7)
where
W‘ ‘ v = ﬁ% (1.8)
i B (o4
o <
‘f From condition (1.5) it is seen that the equation of the free sur-

ﬁ} face will be
‘ c |ov
- X = e l-g
CENE (1.9)
v
2. Fundamental Formulas of the Problem
The problem may be mathematically formulated as follows. It is

. required to determine the characteristic function w(z) = ¢ + iy
? (z=x+ iy; i==/V-l), satisfying the conditions:

T

l. For 02>y>-hy 1in the region occupied by the fluid, the deriv-
ative dw/dz is finite and at infinity for x - +w » the derivative
dw/dz vanishes.

2. On the contour C, the smooth flow condition applies
B g% = ¢ cos(n,x)

3. On the free surface for y = 0, the linearized condition holds
with regard “to the constancy of the pressure

. . Re(dw/dz + ivw) = 0
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- 4. On the bottom of the channel for y = -hg, the following condi--

tion holds

Im dw/dz = O

In the region occupied by the fluid, the point =z is taken and
two contours C; and C, are drawn, of which Ce contains both the

point =z and the contour C, while the C; contains the contour C,

but not the point =z (fig. 1). By the formula of Cauchy for a single-
valued function dw/dz = ¥(z),

V() = 57 végz ‘ég - T e 2 (2.1)
cy Co

where the bar over a letter indicates, as usual, the transition to the
complex conjugate value. The following notation is introduced

Vl(Z) = —2"3_[-—1' -ié‘g‘_)_—%g V2(Z) = - '2'-}{—1‘ '.viz'g‘g—%g (2.2)
Cl ) C,_

It 1s evident that Vl(z) is & holomorphic function in the entire
plane of the éomplex variable outside the contour Cy, having at infin-

ity the order =z-l and capable of being continued analytically in the
entire part of the complex variable plane which lies outside the con-
tour C, while VZ(Z) is a holomorphic function within the contour Cg,

by the extension of which an analytical continustion of this function
may be obtained over the entire strip O0>y> -hj.

The function Vz(z) may be represented in another form. For this
it is possible to find a function w(z), which in the strip O>y> -hg

has a single pole of the first order { = & + in with residue A/Eﬁi
and which satisfies conditions 1, 3, and 4.

In fact, for a vortex of strength T, located at the complex point
£ = £ + in, an expression for the complex velocity was obtained by
Tikhonov (reference 3)

-
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. ' r :
orlz) = 5rp— T) "~ Zmi(z - § + 2ing)

éh AMn + by) cos A(z.- &+ ihg) d'.

I’_ﬂ >(v+X) exp(- Ahg) v sh Ahg - A ch Ahg -
A | , _
sh Ag(n + hg) 'siﬁ' olz - £+ ihg) ~ (2.3)

Y wny - ch2 Aghy

?E where Ag. is the real and positive root of the equation

v sh Ahg = Ach Ahg (2.4)

For cf< A[gho, in all cases where the function to be integrated

has a singularity, the principal value in the sense of Cauchy is taken
under the integral.

For c2>'A/gh0, equation (2.4) has only imaginary roots and the

1 fourth term of formula (2.3), which determines the presence of free
| waves, is absent.

'éﬁ For a source of strength Q located at the complex point

i £ = & + in, the expression of the complex velocity may be obtalned in
the same menner as in the case of a vortex. Without the computations,
the final result is

- Q 9
wQ(Z) T 2n(z - ) +_2ﬂ(z - T + 2ing) ¥

ch A h i zZ - i
%f(\*+)») exp(- Ahg) 3 v+sho))\h: I_l ;(ch )‘1510+ ho) an -
0 .

! ch A\y(n + hg)
vhy - ch@ Aohg

By the use of expressions (2.3) and (2.5), to obtain the function
w(z) may be obtained without difficulty. For this purpose, since
A =T + iQ, the follgwing expression is obtained after simple
transformations:

cos Ag(z - & + ihg) (2.5)
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: . A ' A
©(2) = 5z €y " ZA(z =€ ¥ Zing)
1 F A sin Mz - T + 2ing) - A sin Mz - ¢)
o (v+2r) exp(- Kho) ; veh Abhg - Ach Ahg W
0]
v A cos XO(Z -t + Ziho) - A cos )‘O(Z - )
2 (2.8)

vhy - ch® ghy

Here, as in the preceding formulas, the fourth term, which deter-
mines the presence of free waves, is present only if cle A/gho.

When A = v({) df{ is substituted in the previous formula and
integration is carried out over the contour Cj,

v(2) = Ty(a) -k f v(g{—r—z e f (v+1) em(- 2g) S e o -
Cq. (0]

cos \y(z - T + 2ihg) | _ 1 — ""v . sin Mz ~ t)
v vho-ChZXOhO }dg'*z:ri\[l“v(g){[( +A) exp(- Mo) VShXho-Xch)‘hOd)\-

v _CO_S-XO(Z—_C).}GL ' (2_7)

vhy - ch? Aghg

ac . QD

If both points z and { are situated in the strip O0>y> -hg,
the following equation holds

1 s <= R
- -i exp| iz - § + 2ihg)| ax (2.8)
z - £ + 2ihg \Jér‘ [ ]

With this equation taken in account, it is found from equation (2.7)
that the function Va(z) can be represented in the form
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Vo(z) = - Eiﬂf v(z){f [ i exp [ik(z - T+ Ziho):l +
: o Cl ’ (6]

sin Mz - + 2 : cos An(z - T + 21 _
(v + ) exp(- Ahg) A )(‘ho _g;chi:g()):ldx - =2 th(_ chg :ohoho)}dg +

N _ °°V '- sinv)\(z - t) ) cos Ag(z - €) »
znil:vm{\;[( Fr) el Ano) 5 ShABg - X b xmg TV vhy - ch? Aghg =

- (2.9)
The conjugate complex functions are introduced for real A
HN) = [ v(6) exp - intat, H(\) =f v(¢) exp 1ATAL
¢y N (2.10)

By an interchange in equation (2.9) of the order of integration,
and by simple transformstions » there is readily obtained

Vo(z) =%{{L[[ﬁ(— ) exp[ix(z + ziho)] +

2(\(,\,5; ik)loei@i‘cfg% ("H(— A) exp [ix(z + Ziho)] - EO) exp[— Nz + ziho)] -

H(A) exp ixz + H(- 1) exp(- nz)) -

niiv

2(vh - o? gng) (ﬁ(- M) exp Ing(z + 2ihg) + E(hg) exp [- nglz + Ziho)] -

HE(A\p) exp irgz - H(- %) exp(- i)\oz.)) (2.11)

It is of interest to find the character of the waves that remain
behind the moving body. For this purpose the asymptotic expression of

- the complex veloecity is first obtained for X-»- in the case of a

vortex and source. In reference 3, the asymptotic expression of the
complex velocity in the case of a vortex is of the form
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sh Xo(n + hg)
vhy - ch? Aghy

(UI‘)X_,_.. = - 2Iv sin Ag(z - & + ihg) (2.12)

In a similar msnner, the asymptotic expression of the complex
velocity is obtained in the case of a source. Without the computations,

the final result is

B v ch Ap(n + hy)

(), o= = 2O S o cosholz - &+ i) (2.13)

For the function (z), having a polarity with residue A/Zni , the
following asymptotic expression is obtained:

R cos hg(z - T + 2ihg) - A cos Ap(z - §)

> (2.14)
vho - ch )\oho

((D)x-)_o = - 1iv

Setting A = ?r(l_:) df and integrating over the contour C; yields
the asymptotic expression of the function :\_r(z) = dw/dz:

dw) iv [- . .
— = - H{(- A y) exp iAy(z + 2ihy) +
(dZ X =o» Z(Vho - Chz Xoho) 0 ’ 0 0

H(Ap) exp[- Dolz + 2,iho)] - H(Ag) exp gz - H(- Ag) exp(- i'hoz)]
(2.15)

Finally, from the formula

c dw
Xx) = — Re | =
y( ) g (dz)y=0

it is readily found that for =x-- e sinusoidal waves of length 2:1:/7\0

are formed behind the amplitude of which, after some simple transforma-
tions, may be represented in the form

B C(Vho - Chz Xoho)

a IEO‘O) exp Aghg - H(- Ng) exp - )‘Oh0|

(2.18)
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3. Formulaé for Determining the Forces

The forces acting on the contour C are now computed. The 1ift
force of the contour is denoted by P, the resistarce by R, and the
moment of the forces on the contour about the origin by M. These
forces will be computed by the formulas of Chaplygin-Blasius:

P - iR = -"%L/";ZO(Z_) dz, M = Re %fzx_rzo(Z) dz
. Co . - o '

2 2 _ (3.1)

where C, is an arbitrary contour, situated in the region O>-y>»¥ho
and containing the contour C; and ;b(z) is the complex velocity in

the relative motion obtained by superposing on the sbsolute flow a
uniform motion of the fluid with velocity ¢ in the direction of the
negative x-axis. Thus,

volz) = Vi(z) + Va(z) - ¢
where the contour Cl is chosen to lie between € and Co.

Formulas (3.1) do not take into account the buoyancy ‘force of
Archimedes, equal to gpS, and it moment, equal to -gpSx,, where S

is the area that bounds the contour C, and X, 1s the abscissa of the

center of gravity of this area.

The following integral is now computed:

J =L/‘?r02(z) dz =fVlz(z) dz +f(V2(z) - ¢c)e az + ZfVl(VZ - ¢c) dz
Cz Ca Cz Ca

But the first and second integrals on the right are equal to zero
because the function Vy(z) is holomorphic outside the contour Cg

and has at infinity a zero of at least the first order, while the func-
tion Vgz(z) is holomorphic within the contour Cp. Hence,

J' = Z\fVlVZ dz - Zcf(vl +V2) dz = ZfVlVZ dz - 20‘_/";(2) dz
c c c Cs

2 2
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The velocity circulation about any contour that contains the con-
tour C ‘is denoted by T, so that o

;(z) dz

r

therefore

P-1R = - pkj/“'ViVZ dz + pel .'(3.2)
Ca

By the use of expressions (2.2) and (2.11), the following expression is
obtained

vl(zv) Vo(z) dz = zﬂf Zﬂfz - g{f[H( A) exp in(z + 2ihy) +
Cz

Y T(- \) exp iA(z + 2ihg) - E(\) exp [ - 1A (z + 2ihg)] ]

2 exp (- Mo) v sh Ahg - Ach Ahg
v wztk exp (- Ahg) 1:(0N) expv JS-’;:ZM;OH( ?\()che;cph(()- irz)
P H(- Ag) exp Drg(z + 2ihg) + H(XO) e}@[ olz + Zlho)]
2 vho - ch® Aohg
v EO) exp ihgz + E(- Ao) exp(- ixoz)}
= > af dz
vhy - ch® Aghg

Since the point ¢, which belongs to the contour Cj, lies within
the contour -Cp, with an interchange in the order of integration and

by the following formula,

l \_/ = dz = etikg
2ni z - €
Ca

There is obtained

-
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f Vy(2) Va(z) dz = 2%{ f [ln(‘.x“_z exp(- 2Xbg) +
Co . 0

IH( A2 exp(- 2xhg) - | BV |2 exp tho
v sh Ahg - Ach \hg

T3 em(-Ano

an -

v B(= Ao)|? exp(- 2aghg) + | E(hg) |2 exp 2hghg - 2H(Ag) H(- ()
2 vhy - ch? Xoho

Hence, formula (2.3) assumes the form

3.3)

P-iR=pcI‘-—— IH(—X)IZ exp (- Zmo)-+
0

(v + ) exp(- Ahgp)

|B(-2)]? exp(- 2Ang) - |E(A)]? exp 2Ang
2(v sh Ahg - A ch Ahg) :ldx+

ivp |H(=20)|? exp(~ 2aghg) + [E() % exp 2aghg - 2H(A) H(- Ag)
4 vhy - eh? Aghg (3.4)

Separating the real and imaginary parts and adding to P +the
Archimedes force, not taken into account by the Chaplygin-Blasius for-
mula, results in

’ 2 P = pcl - ——-L/.‘[IH( x)lz exp(- 2xzho) + (v + A} exp(- Ahp) x

1 1 l8(- 2)[2 exp(- 2Ahy) -[B(N) |2 exp zmo]' Im{H(XO) H(- xo)}
1 2(v h Xbg - X ch Ahg) D o+ve

| 2(vhg - o Agho) (s

ov B2 exp 2hghg + | B(- 2g) |2 exp(- 2ngho) - 2 Re{ B(%,) H(- xo)}
T4 vhy - ch? Aghg

(3.8)

STy 1T

PRy o
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Formula (3.6) may be given another form, namely
R - ov rﬁ()‘o) €Xp )‘OhO - H(- )‘o) exp (- X'oho)l 2
4 ch2 )‘OhO - Vhg,

It can be readily shown that the total resistance of the underwater
wing consists only of the wave resistance. In fact, by the following
well~-known formula for computing the wave resistance in the case of a
fluid of finite depth,

(3.7)

2A~h
- x 2 _ 00
R =7 pga (} = Zkoh;) (3.8)

.and with the value of the amplitude a from formula (2.16), for-
mila (3.7) is obtained after some transformations.

The moment of the acting forces on the contour C 1s now com-
puted. When the moment of the Archimedes force is taken into account,

M= - gpSxe + Re %kj/ﬁ\z[%l(z) + V2(z) - %]2 dz (3.9)
C1

This expression is computed in an entirely similar manner to the
computation of the expression P - iR.

For very large absolute values of z the following expansion can
be employed

Vy(z) = z}:ifvggz 2; = ziiz\'/ﬂ?’(g) g + . . .= ?.I;riz e
c Cy

and, hence,

2
f Z Vlz(z) dz = -Zr_n:ij’ Re\fz Vlz(z) dz = O
Co C2

Further,

oETR
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| o ' t//q zCVS - c)2 dz = 0

and therefore,
M= - gpSx, + Rep\fz Vi(Vp - c) dz
. ' S :

or, since the function V5(z) is holomorphic within the contour Cp

M= - gpSx, - pc Re\J/r\iF(z) dz + p Rekj/r‘z Vl(z) Vz(z) dz
C2 C2 (3.10)

It is noted that

) = if 65(¢) exp(- 1) at
Ca

The integrals in formula (3.10) are computed in the same manner as in
the expression (3.3) , and as a result there is obtained the formula

= - gpSx, - pc Re [iH'(O)] +p Re{_z'ln_if EI' (- n) H(- ») exp(- 2nghg) +
0

e :ioe’fpi' :hh%)lo) (2 (- A 1E- ) (- D) + B () F) exp 2hng -

B (- 1) EQ\) = H(- 1) B’ (x))] ax -

v
4(vhg - ch? Aghg)

(H'(— 2o) E(- Ag) exp(- 2hghg) - H'(Ag) H(Ng) exp 2\ghg -

H'(- Ag) H(A) + H(- o) H«(xo))} “ (3.11)-
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Formilas (3.5), (3.7), and (3.11) in the limiting case for hgy-+w
agree with the formulas obtained by Kochin in reference 2.

The function H(A)} in formulas (3.5), (3.7), and (3.11) does not
depend on the contour C,, and for example, the contour C or some

other contour which contains the contour C may be taken for the con-
tour of integration. Moreover, the value of the function H(\) does
not change if, instead of the complex velocity v(z) _of the absolute
motion, the complex velocity of the relative motion v,(z) is teken,

because these two functions differ by a constant c¢. The properties
of the function H(A) will be used in the following section.

4, Examples

In the preceding sections expressions were found in terms of the
function H(A) of a number of important magnitudes, namely, the ampli-
tude of the waves formed, the wave resistance, the 11ft force, and the
moment of the forces acting on the contour. Thus, the function

H(\) JV(Q) exp(- 1NG) At i/ﬂdw exp(- irG) (4.1)
C ' C _

plays a fundamental part for the problem under consideration. In order
to compute this function, it is necessary to know the expression for
the complex velocity, i.e., the solution of the hydrodynamic problem.
In case the relative depth of the submerged contour C 1s sufficiently
large, however, a good approximation is obtained if, in place of the
function v(z), there is substituted in formula (4.1) the expression

of the complex velocity which corresponds to the motion of the con-
tour C in an infinite fluid.

Several examples of such an approximate solution of the problem
will be considered

1. The motion of a circular cylinder. - The circular cylinder of
radius b, situated at the depth h under the free surface of the
fluid, is assumed to move with constant horizontal forward velocity c,
since the circulation about the contour of the cylinder has a given
value I'. In this case, the characteristic function for the infinite -
fluid is known:

cb? T .
w (z) = - —— t 3 in(z + ih)
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Hence,

cb2 +' T
(z + hi)? 2ni(z + ih)

"{r(z): (4.2)

By formula (4.1) the function "H(A) is now constructed:

cb? T

EQA) = + | exp - idz az
() (z + ni)2 2ni(z + hi) xp
Since the contour C contains one singular point z = -ih, there
is obtained by the theorem on residues
H(A) = (T + 2rcb®\) exp - Ah (4.3)

With ‘the use of formula (3.7), the expression for the wave resist-
ance of the cylinder is cbtained

[r sh Ag(hg - h) + 2relyb? ch Ag(hy - }:1):]2
eh? A ghg - vhg ’

and by the use of formula (3.5) the expression for the 1ift force of
the cylinder is obtained

R = pv (4.4)

pcbzI‘ .:rrpczb‘L

pr? + - +
4n(hg - h) 2(ng - n)2 2(ng - n)3

P = pcl -

(r? + 47%c%p%\%) sh 2A(hg - h) + 47cbZT'A ch 2M(hy - h)
%ﬁ\//\ (v + ) exp(- Ahg) T VRS T v dx + gpS (2.5)
o

The integral component of this formula may be computed by the
method of mechanical quadratures. In the limiting cases v = O and
v = », this component can be very accurately computed. Moreover, if
this integral component is considered as a function of the parameter
o = 1/(vhg) = c2/(ghg), it can be shown that for o = 1 +this component

suffers a discontinuity. In the particular case when the radius b of
the cylinder is taken equal to zero, i.e., when the motion of a vortex
under a free surface is.considered, formulas (4.4) and (4.5) lead to
the expressions established by Tikhonov. It is noted further that for-
milas (4.4) and (4.5) have been derived on the assumption that c&< ghg.

For 02>'gho, no free waves are formed behind the cylinder and the wave
resistance R 1s equal to zero.
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For the moment of the forces exerted by.the fluid on the cylinder B
the following expression is obtained by formula (3.11):

H'(- A\p) H( Ao) exp(- 2)‘0110) - H'(Xo) H(Ap) exp Zkoho

- . by
M= -4 Vho - chz A ho
o H' (- Ag) Eg) - B(- ) ' (A)
4 vhy - ch? Aghg

But from equation (4.3), it is evident that
H'(A) = - hH(N) + 27cb? exp(~ Ah)
H'(- \) = hH(- \) - 2ncb? exp Ah
Hence, after simple transformations,

I sh? Ag(hg - h) + meb?hg sh 2hg(hg - h)
ch? Aghg - vhg

M = hR - 2mpcbZv (4.6)

The point of intersection with the y-axis of the resultant forcev
on the body is determined by the formula

M 2ncb?
yO = = ’_R‘ = - h + 2 _ (4'7)
T + 2xcb®\g cth Ao(ho - h)

It is evident that for R>0 this resultant never passes through
the center of the cylinder.

2. Motion of an elliptic cylinder. - An ellipse, having a center
at the depth h and having axes 2a and 2B directed parallel %o
the axes of coordinates x and y, is allowed to move with a constant
velocity c¢ in the direction of the x-axis. The circulation T' is,
for simplicity, taken equal to zero. In this case, the flow of an
infinite fluid sbout the contour C is determined with the aid of an
auxiliary variable and the formula

2
l/\‘cx.z-BZ (u+%), W=——§/\/d,2-[32(u+—:%—)

2

z = - ih +
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where r = /\ka, + B)/(x -~ B) amd [ul = r is the equation of the cir-
cle in the u~plane which corresponds to the contour of the ellipse C.
The exterior of this circle corresponds to the exterior of the ellipse.
The following function is set up:

H(\) =fexp(-— iAz) dw =
Je

A B a2

ful =r

When the substitution w = iv is made, there is obtained

2
CH(A) = - -j;zc-: Na? - B2 exp(- Ah) f(l + %2—) exp % Nal - 2 (v - %:) av

jvi=r
But by the theory. of Bessel functidns it is known that
= Fmewi(-1)-n@
vl =r
hence, .
H()\) = nc AJa2 - p2 exp(-‘)»h){J_l()\’\/a,z_-_Bz_) + erl(Xm}
From the formula
3_1(2) = - 3y(2)

and the value of r, the following expression is obtained

a(\) = chﬁ/\/zf g exp(- Ah) 3, (WWaZ - 6E) (4.8)

The computation is restricted to the wave resistance. By
formula (3.7),
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_ .2 2o+ p B Mlhg - b) N - |
R = 4_7'[ o8B T oz TWE— J1°(MoNa® - B2} (4.9)

From this formula, it follows that for certain Ag and, therefore,
for a certain velocity c <AJghO, the wave resistance is equal to zero;

i.e., the amplitude of the waves formed behind the moving.body becomes
zero. This will be the case if the following relation is satisfied:

1% Almz - B2 = Sk (k=1,2, . . .)

where s, 1is the positive root of the Bessel function Jl(s). The
first root of this function is

Sl = 3.832

Since the parameter Vv = g/c2 is connected with XO by the
equation ' .

el
th koho = 1£-XO

the first velocity at which the wave resistance becomes zero is deter-
mined by the formula

3.832
¢ = 0.51 /\/gl\/a,?' - B2 th Fhoz (4.10)
a” - B

Moreover,
3.832
th_______Eg_ < 1
/\/or,z _ BZ
hence,

¢ < 0.51 AJgAa2 - B2 (4.11)

In a similar manner a number of other examples may be considered.
Moreover, as in reference 2, it is possible in this case to set up a
functional equation for determining the function H(A) and the values
of the circulation T from the condition of the finite velocity at the
sharp edge. These equations may be obtained by the same method. Their
final form will be somewhat more complicated as compared with the case
of the infinite fluid.
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